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Dynamical Phase Transitions in the 
Two-Dimensional ANNNI Model 
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We study the phase diagram of the two-dimensional anisotropic next-nearest 
neighbor Ising (ANNNI) model by comparing the time evolution of two distinct 
spin configurations submitted to the same thermal noise. We clearly see several 
dynamical transitions between ferromagnetic, paramagnetic, antiphase, and 
floating phases. These dynamical transitions seem to occur rather close to the 
transition lines determined previously in the literature. 
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1. I N T R O D U C T I O N  

Finding the phase diagrams of systems with competing interactions is 
known to be a difficult problem in statistical mechanics. The main dif- 
ficulties arise since it is not known a priori whether the system can order at 
low enough temperature and, if it does, how many pure states characterize 
the ordered phase. Because of these difficulties spin glasses ~'2) and models 
such as the axial next-nearest neighbor Ising (ANNNI) model ~3'4) have 
been the subject of controversy during the past decade. 

Recently, a new dynamical method ~5~ for probing phase diagrams has 
been proposed based on a comparison of the time evolution of distinct 
configurations subjected to the same thermal noise. The main idea is the 
following: in a high-temperature phase, thermal noise will be strong 
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enough to make the system forget its initial configuration. Consequently, 
one expects that, in a paramagnetic phase, two different configurations will 
end up becoming identical. On the contrary, in a low-temperature phase, 
there will exist a finite probability that different initial configurations will 
fall into different pure phases. Hence, by looking at the time evolution of 
the distance between two configurations submitted to the same thermal 
noise, one can hope to determine the phase diagram of the system. 

This method has been shown analytically to determine thresholds or 
phase diagrams for a large class of mean field models, including automata, 
nonsymmetric spin glasses, neural networks, and simple mean field 
ferromagnets.(5 8) A numerical study ~6) has also been carried out on the 
three-dimensional Ising model. For pure ferromagnetic couplings, the 
method gave the correct Curie temperature, whereas in the spin-glass case, 
the distance appeared to become nonzero at a significantly higher tem- 
perature than that usually interpreted as the spin-glass transition, but close 
to the temperature where nonexponential relaxation is believed to start. 

Since there does not exist a general theory (91 showing that this method 
is a reliable probe of phase diagrams, results obtained should be regarded 
more as dynamical properties than true equilibrium ,features of the system. 
Nevertheless, it is tempting to see what this dynamical approach gives in 
problems for which existing methods do not give a clear and accurate 
determination of the phase diagram. 

The main goal of the present paper is to use this dynamical approach 
to investigate the existence of a floating phase in the two-dimensional 
ANNNI model. 13"l~ 18~ In Section 2, we define the model and explain the 
dynamical method. Section 3 contains our results for the distance between 
two configurations measured on four sweeps through the phase diagram-- 
three as a function of temperature at fixed x = -J2/J~ and one as a function 
of x at fixed temperature. Here Jl and J2 are the nearest and the second 
next-nearest neighbor interactions, respectively. Increasing temperature for 
small x, we find evidence for a direct transition from ferromagnetic-like 
behavior to a paramagnetic phase. On the other hand, for large x, we find 
a rather large region between the locked (antiphase) phase and the 
paramagnetic phase. We feel that this region can be interpreted as the 
floating phase of the two-dimensional ANNNI model. In Section 4, we 
show the variation with time and initial conditions of the distance and of 
the survival probability, i.e., the probability that the two initial con- 
figurations are still different after a certain time, at a few selected points of 
the phase diagram. We find that each phase can be characterized by a 
different behavior in these quantities. 
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2. M O D E L  A N D  M E T H O D  

We consider an Ising model ( ~ / =  + 1) on a square lattice governed by 
the Hamiltonian 

~ a  = - - J l  E (f f  LJff i+ l , j  "~- (Ti, j(Ti, j +  l ) - -  J2  E ~ i , j ~ i +  2,j 1 ) 
i,j i,j 

where the sum runs over all lattice sites. The nearest neighbor interaction 
J1 is ferromagnetic (J1 > 0), whereas J2 is antiferromagnetic (J2 < 0). We 
define ~c in the standard way: 

K = - - J 2 / J l  (2) 

and will measure temperature T in units of J1 so that, effectively, J1 = 1. 
Our calculations are performed for finite lattices of linear dimension L 

with the boundary conditions 

~i , j  ~- (Ti+ L, j  ~ ff i, j+  L ~ ~ i+ L/2,j+ L/2 

Hence, a sample of linear size L consists of 

N = �89 2 

(3) 

and then choose 

~rij(t + dt) = 

different spins. The reasons for choosing these boundary conditions are 
partly historical--we wrote our first program that way--and partly con- 
venience--it allows an easy vectorization of the program. However, we do 
not think that this choice has any effect on our results, because L is always 
chosen to be a multiple of eight, so that the boundary conditions are com- 
patible with both the ferromagnetic configurations, ( + + + .-- + + + ) and 
( ), that are the ground states for 0 < ~c < 0.5 and with the 
periodic antiphase configurations, e.g., ( +  + . . . . .  + + - - )  that 
constitute the ground states for ~c > 0.5. 

The dynamical evolution of configurations is based on a heat bath 
Glauber relaxation. To update the spin %. during the time interval t to 
t + dt, we compute its local field h~(t) at time t: 

h i j ( t ) = J l [ f f i ,  j + l ( t ) + a i ,  j l ( t ) + f f i + l , j ( l ) + f f i  l,j(t)] 
+ J2[ai+2, j ( t )  + ai_2,i(t)] (5) 

1 1 hij(t) 
+ 1 with probability ~ + ~ tanh T 

1 1 ho(t) 
- ~ tanh - 1 with probability ~ T 

(6) 

(4) 
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Usually, at each time step in a Monte Carlo calculation, one chooses a 
spin a U at random and updates it according to (5) and (6). This ensures 
detailed balance and that the correct equilibrium at temperature T is 
approached asymptotically. For this procedure, it is natural to scale the 
time step as dt = l /N ,  where N is the number of spins. One can also (and 
should on a vector computer) update simultaneously several spins. This 
form of updating also satisfies detailed balance and therefore leads to the 
right equilibrium as long as one updates simultaneously only spins that do 
not interact directly. In the calculations presented below, we update 
simultaneously rows of spins along the diagonal, i.e., during the first time 
step we update simultaneously a11, 0.22,..-, G1/2L, I/2L, then during the next 
step, we update 0.12, 0.23 ..... a~/2L,~/ZL+ 1, followed during the next time step 
by a~3, 024 . . . . .  0.1/2L, 1/2L+2, and so on. Of course, if n spins are updated 
during a single time step, one should scale the time step as dt = n/N.  

All the calculations described in the present paper concern the 
comparison of two different initial 'configurations submitted to the same 
thermal noise. Let us now explain how this is done. (5) We start with two 
different initial configurations {a•(0)} and {5~(0)}. Assume that the two 
systems are in configurations {0.0.(t)} and {#0.(t)} at time t and that we 
want to update the spins a0 and 50 during the time interval t, t + dt. We 
first compute the local fields hi, j ( t )  and ~ij(t) by (5) for each spin in the 
configurations. A random number zo., uniformly distributed between 0 and 
1, is then chosen and both spins a~j and ~ are updated according to (6) 
using the same random number zo. Explicitly, 

I1 1 
a o.( t + dt ) = sign -~ + -~ 

E 1 #~(t + dt) = sign ~ + 

tanh ( ~ )  - zu] (7a) 

tank ( ~ )  - z/j] (7b) 

The easiest way to compare two configurations is to define the 
distance A(t )  between them by 

1 
a(t) = 2 ao( t ) ]  2 (8) 

t j  

where the sum is over all lattice sites. Defined this way, A(t )  is the fraction 
of spins that are different in the two configurations [i.e., such that 
a~j(t) = -O~j(t)]. If A(t )  tends to zero as t tends to infinity, then the two 
configurations become identical as t increases and the system forgets its 
initial condition. Usually, we repeated our calculations for many samples 
and averaged A(t) over all samples. 
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If for any reason, e.g., finite-size effects, fluctuations, convergence to a 
paramagnetic phase, the two configurations {olj(t)} and {6~(t)} are iden- 
tical at time t, they will remain identical for all later times, since the same 
z o is used in (7a) and (7b). As a result, it is more convenient to measure the 
distance A(t) only for those samples that have survived to time t, i.e., for 
which A(t)r To do so, we introduce <s) the survival probability P(t), 
defined to be the fraction of samples for which the two configurations 
{a+/(t)} and {Sij(t)} are still different at time t. We then define the distance 
(D(t)) by averaging over only those samples that have survived, i.e., 

(D( t )  ) = (~ ( t )  ) /P( t )  (9) 

In the following two sections, we present curves of (D(t)) and P(t) 
for various values of the coupling constants in (1). Of course using (9), it is 
possible to recover (A(t)). The advantage of (D(t)) is that in most cases 
P(t) and (A(t)) depend on the initial conditions, e.g., on A(0), or on the 
fact that {~(0)} or {6+/(0)} is a ground state and on time, e.g., P(t) tends 
to decrease with time due to finite-size effects or fluctuations, whereas 
(D(t)) does not suffer from these effects. On the other hand, since P(t) 
decreases with time, the distance D(t) is measured on smaller and smaller 
samples and therefore tends to fluctuate more and more as time increases. 

3. PHASE D I A G R A M  

The precise shape of the phase diagram of the ANNNI model varies 
from author to author. As an indication, we show the phase diagram 
calculated by Finel and de Fontaine (11) in Fig. 1. It is a tremendous task to 
explore the whole phase diagram by any numerical method. We decided to 
limit ourselves to four sweeps through the phase diagram (see Fig. 1): three 
sweeps (denoted I, II, III) at fixed x (~c=0.0, 0.2, and 0.8) and one sweep 
at a fixed temperature ( T =  2.0). 

Our calculations were performed for two lattice sizes L = 32 and 64. 
For L =  32 we measured (D(t)) by averaging over 1000 samples at times 
t =  500 and 1000, while for L =  64 we averaged (D(t)) over 200 samples 
at t =  1000 and 2000. In both cases, the initial configurations were 
chosen to be two ground states of the system: (+  + + ... + + + )  
and ( -  ) for Figs. 2, 3, and 5 (for ~c<0.6) and 
( + +  . . . . .  + + - - ) a n d ( - - + +  . . . . .  + + ) f o r F i g s .  4 a n d 5  (for 
tr > 0.6). The calculations could have been done starting with two random 
initial conditions (as in Section 4), but this would have required more 
iterations, since with random initial conditions equilibrium takes longer to 
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Fig. 1. Schematic representation of the phase diagram of the two-dimensional ANNNI 
model (after Finel and de Fontainelm). ( - - - - )  Our sweeps II, III, and IV (sweep I is along 
the K=0 axis) as well as the special points, marked A-F, discussed in Section 4. ( - - - )  The 
estimated IHJ31 position of the disorder line. 
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Fig. 2. Variation of (D(t)) as a function of temperature for ~=0.0 (sweep I). The broken 
vertical line marks the exactly known value of To. Note that for T<2.2, the symbols for 
different times and the same lattice superimpose, indicating the establishment of equilibrium. 
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be established at low temperatures. However, the results would be very 
similar. 

The behavior of (D(t)) for the standard two-dimensional 
ferromagnetic Ising model ( x = 0 . 0 )  is illustrated in Fig. 2. We see that 
equilibrium is reached at all temperatures except in the critical region, 
where finite-size and finite-time effects can be seen. 

In Fig. 3, we see a rather similar situation for K = 0.2. There is clearly a 
transition at T~2 .0 ,  with finite-size effects again apparent  in the critical 
region. On the other hand, Fig. 4 for K=0.8  presents a very different 
picture. We see evidence for two transitions: one at T I ~  1.6 and the 
other at T2~2.6.  The low-temperature phase is the antiphase 
( + +  . . . . .  + + - - ) ,  while the phase T I < T < T 2  seems to be the 
floating phase of the two-dimensional A N N N I  model. In Section 4, we will 
see that the dynamical characteristics of (D(t)) and P(t) are rather 
different in this intermediate phase from those seen in the antiphase or a 
simple paramagnetic phase. 

Comparing our approach to other determinations of the phase 
diagram of the A N N N I  model, we find that all the previous works (11 13) 
would agree with our results for sweeps I and II (Figs. 2 and 3). However, 
for sweep III,  which is of course the most interesting one, since it is an 
at tempt to see the floating phase, our TI and T 2 agree rather well with the 
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work by Finel and de Fontaine, (~l) but are significantly higher than the 
transition temperatures estimated elsewhere. (12'13) 

Figure 5 shows the results of our sweep in ~c at fixed temperature, 
T=2.0 .  We clearly see the transition from the floating phase to the 
antiphase at tc ~ 1.2. However, on the basis of these results, it is hard to say 
whether there is a direct transition from the ferromagnetic phase to the 
floating phase or if a narrow paramagnetic phase exists between the 
ferromagnetic and floating phases. Enlarging the scale (see inset) shows 
that the floating phase appears to exist down to at least ~c = 0.3, which is 
lower than all previous estimates. (11 13) However, even on this scale, our 
results are not accurate enough to tell whether the finite-size and finite-time 
effects we see for 0.15 < ~c < 0.3 are due to two transitions separated by a 
na~)row paramagnetic phase between or a single transition. It would be 
interesting to improve our results to obtain better evidence of a 
paramagnetic phase surrounding a disorder line (11'13) extending down to 
the multicritical point at T =  0, ~c = 0.5. 

4. T IME DEPENDENCES 

We now show that the time dependence of our two quantities of 
interest--the survival probability P(t) and the averaged distance 
( D ( t ) ) - - i s  rather different in the various phases. In Section 3, we choose 
ground states for initial configurations to minimize the time it took to 
reach equilibrium. The time effects in which we are now interested are more 
easily seen if we choose our two initial configurations at random. We 
consider two cases: 

ICI: ao(O ) random with ~ ( 0 ) =  -ao.(O ). 
IC2: a;j(0) and ffa(0) both random and uncorrelated. 

The system sizes (L = 32 and 64), the number of samples (1000 and 200), 
and the maximum times ( t--  1000 and 2000) are the same as in Section 3. 

To establish some characteristic "benchmarks," it is useful to first 
consider the behavior of P(t) and (D(t)) for the usual two-dimensional 
ferromagnetic Ising model (•=0).  The time dependence of P(t) and 
(D(t)) for initial conditions IC1 at temperatures T = 2 . 0 < T c ,  T =  
T,=2.269185..., and T = 2 . 5 >  T,. are illustrated in Figs. 6a and 6b. The 
effect of changing the initial condition to IC2 is shown in Fig. 7 for L = 32. 

From these figures, we see that for T <  Tc the survival probability has 
a nonzero long-time limit, which does not appear to depend on the size. 
However, the time taken to reach this limit does depend on both the size 
and the initial conditions. (Indeed, for L = 64, the long-time limit has not 
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yet been reached.) These two effects are easy to understand: the larger the 
system is, the longer it takes to eliminate the defects (domain walls) 
and changing the initial conditions affects the probability that two 
configurations fall into the same valley. 

Turning now to the behavior of the distance (D(t)), we observe that, 
for T< T c, (D(t)) has a finite limit, which depends on neither L nor on 
the initial condition. 4 This behavior is also understandable: (D(t)) is the 
distance between the two valleys of the pure equilibrium phases. It is 
interesting to notice that (D(t)) changes with time on a time scale 
comparable to that of P(t). 

At T =  Tc, the survival probability decreases to zero with time with a 
time scale that increases with L, as can be expected at a critical point. On 
the other hand, the distance (D(t)) appears to have a nonzero limit which 
decreases with L. For  a model with only ferromagnetic interactions one can 
s h o w  (19) that (D(t)) tends to the magnetization as t tends to infinity and 
L tends to infinity. Hence one expects limt~oo (D(t)) to decrease like 
L C/v, where fl and v have their usual definitions. For the two two- 
dimensional Ising model, fl = 1/8 and v--1,  so that the decay with L is 
rather slow. 

Finally, for T >  To, we observe that the survival probability goes to 
zero very rapidly, while (D(t)) has a finite long-time limit, which 
decreases quickly with L. However, as soon as P(t) is very small, (D(t)) 
starts to fluctuate considerably because of the small number of samples. 

Similar results for ~c ~ 0 are presented in Figs. 8-10. In Fig. 8, ~ = 0.2 
and T--1.5,  and we expect (see Fig. 1) that the system is in the 
ferromagnetic phase. We do see, indeed, that the time dependence is very 
similar to that found in the ferromagnetic phase of the simple Ising model. 

In Fig. 9, ~c = 0.8 and T =  1.3, and we expect the system to be in the 
antiphase ( +  + . . . . .  + + - -  ). Again the behavior is similar to that 
seen in Figs. 6 and 7 with T <  Tc, except that the time scale is longer and 
the system still far from equilibrium. In addition, we would expect a further 
small difference with Fig. 8, since there are now four valleys. Consequently, 
(D(t)) should depend on the initial condition, since the probability of 
falling into two opposite valleys has no reason to be the same for different 
initial conditions. 

Finally, in Fig. 10, we show results for ~c = 0.8 and T =  2.0. This point 
is in the middle of the intermediate phase detected in Fig. 4 (recall also 
Fig. 5). We see that P(t) decreases (at least for L = 32) rather slowly with 
time, while (D(t)) reaches a long-time limit very quickly. It also appears 

4 A l t h o u g h  for  L = 64 the  l imit  is still no t  a p p a r e n t  a f te r  2000 steps,  we have  checked  t ha t  

smal le r  sizes c o n v e r g e  to  the  s ame  l imit  as s h o w n  for L = 32. 
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that this limit does not depend on L. We think that the fact that (D(t)) 
reaches its long-time limit so quickly is due to the fact that the surface 
tension is zero in the floating phase. 

In summary: the various phases of the ANNNI model correlate with 
significantly different behavior of P(t) and (D(t)) as functions of t: 

1. Ferromagnetic phase: P(t) has a finite limit as t goes to infinity (at 
least if one does not wait for times that increase exponentially with 
L that allow jumps from the plus phase to the minus phase). 
(D(t)) varies slowly with time [on the same time scale as P(t)-] 
and has a finite limit independent of L. 

2. Critical point: P(t) decreases to zero on a time scale that depends 
on L. The (D(t)) has a finite long-time limit, which decreases 
with L. 

3. Paramagnetic phase: P(t) decreases quickly to zero. (D(t)) has a 
finite limit, which decreases rapidly with L. 

4. Floating phase: P(t) decreases (probably to zero) on time scales 
that depend on L. The (D(t)) has a finite, long-time limit, which 
is reached quickly and does not depend on L. 
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5. CONCLUSION 

The main result of the present work could be summarized by Fig. 4 or 
Fig. 5. By monitoring the distance between two configurations submitted to 
the same thermal noise, we have found evidence for a floating phase 
between the antiphase ( + + . . . . .  + + - - ) and the paramagnetic phase 
of the two-dimensional ANNNI model. However, the extent of this phase is 
rather larger than that found in previous calculations. 

As yet, the dynamical approach used in this paper has not been tested 
on many systems. Consequently, it is difficult to judge whether our results 
are just dynamical effects or reliable predictions of the phase diagram 
at thermal equilibrium. Nevertheless, the results reported here suggest 
that further experimentation with and analysis of the method would 
be worthwhile and could establish the method as a reliable probe of 
equilibrium phases. 
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